organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-(2-Pyridylsulfanyl)-N-p-tolylacetamide

Yan Gao, Dong Liang, Li-Xing Gao, Guang-Jun Fang and Wei Wang*

School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, People's Republic of China Correspondence e-mail: tju_chemistry@yahoo.com.cn

Received 17 November 2007; accepted 18 November 2007

Key indicators: single-crystal X-ray study; T = 294 K; mean σ (C–C) = 0.004 Å; R factor = 0.045; wR factor = 0.130; data-to-parameter ratio = 14.1.

The title compound, C₁₄H₁₄N₂OS, contains a pyridine and a benzene ring almost perpendicular to each other, subtending a dihedral angle of 88.2 (2)°. Intermolecular hydrogen bonds between adjacent NH groups and carbonyl O atoms link molecules together into chains parallel to [100], the shortest axis.

Related literature

For related literature, see: Koike et al. (1999).

Experimental

Crystal data

C14H14N2OS
$M_r = 258.33$
Orthorhombic, Pbca
a = 9.348 (2) Å

b = 12.361 (3) Å c = 23.184 (6) Å V = 2678.9 (11) Å³ Z = 8

Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
$T_{\rm min} = 0.95, \ T_{\rm max} = 0.97$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of
$wR(F^2) = 0.130$	independent and constrained
S = 1.01	refinement
2366 reflections	$\Delta a = -0.25 e^{\Delta^{-3}}$
2366 reflections 168 parameters	$\Delta \rho_{\text{max}} = 0.25 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.26 \text{ e } \text{\AA}^{-3}$

T = 294 (2) K

 $R_{\rm int} = 0.066$

 $0.20 \times 0.18 \times 0.14 \text{ mm}$

12855 measured reflections 2366 independent reflections 1535 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2A\cdotsO1^{i}$	0.89 (3)	2.09 (3)	2.904 (3)	152 (2)

Symmetry code: (i) $x + \frac{1}{2}, y, -z + \frac{1}{2}$.

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2139).

References

- Bruker (1997). SMART (Version 5.611), SAINT (Version 6.0), SADABS (Version 2.03) and SHELXTL (Version 5.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Koike, K., Jia, Z., Nikaido, T., Liu, Y., Zhao, Y. & Guo, D. (1999). Org. Lett. 1, 197–198.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o4854 [doi:10.1107/S160053680706045X]

2-(2-Pyridylsulfanyl)-N-p-tolylacetamide

Y. Gao, D. Liang, L.-X. Gao, G.-J. Fang and W. Wang

Comment

2-Mercaptopyridine is an important class of medical intermediate. Recently, many biological copmpounds (Koike *et al.*,1999) have been prepared having 2-mercaptopyridine as raw material. We have synthesized the title compound, $C_{14}H_{14}N_2 O S$, (I), from 2-mercaptopyridine with *p*-tolylcarbamic chloride, and we are reporting herein its crystal structure.

The molecular structure of (I) contains a pyridinyl and a benzene rings, almost perpendicular to each other, subtending a dihedral angle of 91.8 (2)%. The methyl carbon is coplanar to the benzene ring (r.m.s deviation: 0.0075 (3) Å). Due to the π - π conjugation bwtween the S atom and pyridinyl ring, the S1—C5 bond distance [1.772 (3) Å] is slightly shorter than the S1—C6 one [1.801 (2) Å]. Intermolecular hydrogen bonds between adjacent N—H groups and carbonyl O atoms link molecules together into chains parallel to [100], the shortest axis direction.

Experimental

The title compound was synthesized by the reaction of pyridine-2-thiol with *p*-tolylcarbamic chloride in refluxing ethanol. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in chloroform/acetone.

Refinement

The H atom attached to N atom was located in a difference density map and the atomic coordinates allowed to refine freely. Other H atoms attached to carbon were positioned geometrically and refined as riding (C—H = 0.93-0.97%A). For the CH and CH₂ groups, U_{iso} (H) values were set equal to $1.2U_{eq}$ (C) and for the methyl groups they were set equal to $1.5U_{eq}$ (C).

Figures

Fig. 1. View of the molecule of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 35% probability level.

2-(2-Pyridylsulfanyl)-N-p-tolylacetamide

Crystal data

 $C_{14}H_{14}N_2OS$ $M_r = 258.33$

Orthorhombic, Pbca

 $D_x = 1.281 \text{ Mg m}^{-3}$ Melting point: 403 K Mo *K* α radiation $\lambda = 0.71073 \text{ Å}$ Hall symbol: -P 2ac 2ab a = 9.348 (2) Å *b* = 12.361 (3) Å c = 23.184 (6) Å $V = 2678.9 (11) \text{ Å}^3$ Z = 8 $F_{000} = 1088$

Data collection

b = 12.361 (3) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 23.184 (6) Å	T = 294 (2) K
$V = 2678.9 (11) \text{ Å}^3$	Plate, colourless
Z = 8	$0.20\times0.18\times0.14~mm$
$F_{000} = 1088$	
Data collection	
Bruker SMART CCD area-detector diffractometer	2366 independent reflections
Radiation source: fine-focus sealed tube	1535 reflections with $I > 2\sigma(I)$

 $\theta = 2.8 - 22.6^{\circ}$

Cell parameters from 2537 reflections

diffractometer	2366 independent reflections
Radiation source: fine-focus sealed tube	1535 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.066$
T = 294(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.8^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -10 \rightarrow 11$
$T_{\min} = 0.95, T_{\max} = 0.97$	$k = -14 \rightarrow 14$
12855 measured reflections	$l = -27 \rightarrow 15$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.130$	$w = 1/[\sigma^2(F_o^2) + (0.0661P)^2 + 0.6597P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} = 0.001$
2366 reflections	$\Delta \rho_{max} = 0.25 \text{ e} \text{ Å}^{-3}$
168 parameters	$\Delta \rho_{min} = -0.26 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
S1	0.15494 (7)	0.53279 (5)	0.32262 (3)	0.0510 (3)
01	0.09884 (17)	0.36599 (16)	0.22875 (8)	0.0607 (6)
N1	0.1009 (3)	0.4497 (2)	0.42221 (10)	0.0619 (7)
N2	0.3332 (2)	0.33742 (17)	0.20810 (9)	0.0453 (5)
C1	0.1150 (4)	0.3798 (3)	0.46624 (14)	0.0786 (10)
H1	0.0559	0.3888	0.4981	0.094*
C2	0.2108 (4)	0.2963 (3)	0.46715 (14)	0.0789 (10)
H2	0.2156	0.2494	0.4984	0.095*
C3	0.3000 (4)	0.2838 (3)	0.42029 (13)	0.0691 (9)
Н3	0.3672	0.2283	0.4198	0.083*
C4	0.2894 (3)	0.3536 (2)	0.37423 (12)	0.0538 (7)
H4	0.3489	0.3464	0.3423	0.065*
C5	0.1877 (3)	0.4347 (2)	0.37679 (11)	0.0439 (6)
C6	0.2722 (3)	0.4933 (2)	0.26470 (11)	0.0479 (7)
H6A	0.2788	0.5525	0.2374	0.057*
H6B	0.3671	0.4811	0.2803	0.057*
C7	0.2246 (2)	0.39226 (19)	0.23277 (10)	0.0407 (6)
C8	0.3274 (2)	0.24390 (19)	0.17239 (10)	0.0408 (6)
C9	0.4569 (3)	0.1969 (2)	0.15700 (12)	0.0554 (7)
Н9	0.5421	0.2262	0.1705	0.067*
C10	0.4597 (3)	0.1067 (2)	0.12164 (13)	0.0625 (8)
H10	0.5475	0.0775	0.1110	0.075*
C11	0.3352 (3)	0.0589 (2)	0.10166 (12)	0.0517 (7)
C12	0.2078 (3)	0.1059 (2)	0.11785 (11)	0.0523 (7)
H12	0.1227	0.0754	0.1049	0.063*
C13	0.2016 (3)	0.1970 (2)	0.15273 (11)	0.0480 (6)
H13	0.1137	0.2265	0.1629	0.058*
C14	0.3383 (3)	-0.0406 (2)	0.06350 (15)	0.0742 (9)
H14A	0.2519	-0.0813	0.0689	0.111*
H14B	0.4191	-0.0846	0.0735	0.111*
H14C	0.3458	-0.0188	0.0239	0.111*
H2A	0.420 (3)	0.3602 (19)	0.2169 (10)	0.050 (7)*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0496 (4)	0.0530 (4)	0.0504 (4)	0.0121 (3)	0.0049 (3)	0.0018 (3)
01	0.0300 (10)	0.0814 (14)	0.0706 (13)	-0.0041 (9)	0.0053 (9)	-0.0170 (10)
N1	0.0601 (14)	0.0777 (17)	0.0479 (14)	0.0104 (13)	0.0075 (12)	-0.0002 (12)
N2	0.0268 (11)	0.0523 (13)	0.0567 (14)	-0.0019 (10)	0.0002 (10)	-0.0017 (11)
C1	0.092 (2)	0.095 (3)	0.0492 (19)	0.004 (2)	0.0129 (17)	0.0102 (18)
C2	0.111 (3)	0.074 (2)	0.052 (2)	0.000 (2)	-0.005 (2)	0.0160 (17)
C3	0.086 (2)	0.0578 (18)	0.064 (2)	0.0111 (17)	-0.0137 (18)	-0.0023 (16)
C4	0.0583 (16)	0.0549 (16)	0.0481 (16)	0.0061 (14)	-0.0032 (13)	-0.0012 (13)

supplementary materials

C5	0.0413 (14)	0.0496 (15)	0.0406 (14)	-0.0019 (12)	-0.0018 (11)	-0.0055 (12)
C6	0.0440 (15)	0.0504 (15)	0.0494 (16)	-0.0016 (12)	0.0052 (12)	0.0055 (12)
C7	0.0331 (13)	0.0514 (15)	0.0375 (14)	-0.0019 (11)	0.0016 (11)	0.0098 (11)
C8	0.0323 (13)	0.0427 (13)	0.0474 (15)	-0.0009 (11)	0.0024 (11)	0.0071 (12)
C9	0.0356 (14)	0.0513 (16)	0.079 (2)	-0.0003 (12)	-0.0004 (13)	-0.0028 (15)
C10	0.0449 (16)	0.0543 (17)	0.088 (2)	0.0103 (14)	0.0033 (15)	-0.0050 (16)
C11	0.0544 (17)	0.0455 (15)	0.0552 (17)	0.0018 (13)	-0.0038 (13)	0.0054 (13)
C12	0.0449 (15)	0.0626 (18)	0.0494 (16)	-0.0110 (13)	-0.0046 (12)	0.0009 (14)
C13	0.0339 (13)	0.0624 (17)	0.0477 (15)	0.0010 (12)	0.0011 (11)	0.0013 (14)
C14	0.081 (2)	0.0598 (19)	0.082 (2)	0.0022 (17)	-0.0014 (17)	-0.0118 (17)

Geometric parameters (Å, °)

S1—C5	1.772 (3)	C6—H6A	0.9700
S1—C6	1.801 (2)	С6—Н6В	0.9700
O1—C7	1.224 (3)	C8—C13	1.388 (3)
N1C5	1.342 (3)	C8—C9	1.389 (3)
N1-C1	1.344 (4)	C9—C10	1.384 (4)
N2—C7	1.347 (3)	С9—Н9	0.9300
N2—C8	1.423 (3)	C10-C11	1.385 (4)
N2—H2A	0.89 (3)	C10—H10	0.9300
C1—C2	1.366 (5)	C11—C12	1.377 (4)
С1—Н1	0.9300	C11—C14	1.515 (4)
C2—C3	1.378 (4)	C12—C13	1.388 (4)
С2—Н2	0.9300	C12—H12	0.9300
C3—C4	1.376 (4)	С13—Н13	0.9300
С3—Н3	0.9300	C14—H14A	0.9600
C4—C5	1.384 (3)	C14—H14B	0.9600
C4—H4	0.9300	C14—H14C	0.9600
C6—C7	1.518 (3)		
C5—S1—C6	103.77 (12)	O1—C7—C6	122.4 (2)
C5—N1—C1	116.6 (3)	N2C7C6	113.6 (2)
C7—N2—C8	128.8 (2)	C13—C8—C9	118.6 (2)
C7—N2—H2A	115.8 (16)	C13—C8—N2	124.2 (2)
C8—N2—H2A	115.2 (16)	C9—C8—N2	117.2 (2)
N1—C1—C2	124.2 (3)	С10—С9—С8	120.4 (2)
N1-C1-H1	117.9	С10—С9—Н9	119.8
C2-C1-H1	117.9	С8—С9—Н9	119.8
C1—C2—C3	118.0 (3)	C9—C10—C11	121.7 (2)
С1—С2—Н2	121.0	C9—C10—H10	119.1
С3—С2—Н2	121.0	C11-C10-H10	119.1
C4—C3—C2	119.8 (3)	C12-C11-C10	117.1 (2)
С4—С3—Н3	120.1	C12-C11-C14	121.2 (2)
С2—С3—Н3	120.1	C10-C11-C14	121.7 (2)
C3—C4—C5	118.1 (3)	C11—C12—C13	122.5 (2)
С3—С4—Н4	121.0	C11—C12—H12	118.8
C5—C4—H4	121.0	C13—C12—H12	118.8
N1—C5—C4	123.3 (3)	C12—C13—C8	119.7 (2)
N1—C5—S1	110.94 (19)	C12—C13—H13	120.2

C4—C5—S1	125.7 (2)	C8—C13—H13	120.2
C7—C6—S1	114.11 (17)	C11—C14—H14A	109.5
С7—С6—Н6А	108.7	C11—C14—H14B	109.5
S1—C6—H6A	108.7	H14A—C14—H14B	109.5
С7—С6—Н6В	108.7	C11—C14—H14C	109.5
S1—C6—H6B	108.7	H14A—C14—H14C	109.5
Н6А—С6—Н6В	107.6	H14B—C14—H14C	109.5
O1—C7—N2	123.9 (2)		
C5—N1—C1—C2	0.0 (5)	S1—C6—C7—N2	-153.34 (18)
N1—C1—C2—C3	0.9 (6)	C7—N2—C8—C13	5.5 (4)
C1—C2—C3—C4	-0.8 (5)	C7—N2—C8—C9	-173.9 (2)
C2—C3—C4—C5	-0.1 (4)	C13—C8—C9—C10	1.6 (4)
C1—N1—C5—C4	-1.0 (4)	N2-C8-C9-C10	-179.0 (2)
C1—N1—C5—S1	179.7 (2)	C8—C9—C10—C11	-1.6 (4)
C3—C4—C5—N1	1.1 (4)	C9-C10-C11-C12	0.9 (4)
C3—C4—C5—S1	-179.8 (2)	C9-C10-C11-C14	-179.3 (3)
C6—S1—C5—N1	-176.38 (19)	C10-C11-C12-C13	-0.2 (4)
C6—S1—C5—C4	4.4 (3)	C14—C11—C12—C13	-180.0 (3)
C5—S1—C6—C7	72.68 (19)	C11—C12—C13—C8	0.1 (4)
C8—N2—C7—O1	2.0 (4)	C9—C8—C13—C12	-0.8 (4)
C8—N2—C7—C6	-175.9 (2)	N2-C8-C13-C12	179.8 (2)
S1—C6—C7—O1	28.7 (3)		
IL due to			
<i>Hyarogen-bona geometry</i> (A, [°])			

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\dots}\!A$
N2—H2A····O1 ⁱ	0.89 (3)	2.09 (3)	2.904 (3)	152 (2)
Symmetry codes: (i) $x+1/2$, y , $-z+1/2$.				

Fig. 1